The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis
نویسندگان
چکیده
Pollen embryogenesis provides a useful means of generating haploid plants for plant breeding and basic research. Although it is well-established that the efficacy of the process can be enhanced by the provision of immature pistils as a nurse tissue, the origin and compound class of the signal molecule(s) involved is still elusive. Here, a micro-culture system was established to enable the culturing of populations of barley pollen at a density too low to allow unaided embryogenesis to occur, and this was then exploited to assess the effect of using various parts of the pistil as nurse tissue. A five-fold increase in the number of embryogenic calli formed was obtained by simply cutting the pistils in half. The effectiveness of the pistil-conditioned medium was transitory, since it needed replacement at least every 4 days to measurably ensure embryogenic development. The differential effect of various size classes of compounds present in the pistil-conditioned medium showed that the relevant molecule(s) was of molecular weight below 3 kDa. This work narrows down possible feeder molecules to lower molecular weight compounds and showed that the cellular origin of the active compound(s) is not specific to any tested part of the pistil. Furthermore, the increased recovery of calli during treatment with cut pistils may provide a useful tool for plant breeders and researchers using haploid technology in barley and other plant species.
منابع مشابه
Time-lapse imaging of the initiation of pollen embryogenesis in barley (Hordeum vulgare L.)
Pollen embryogenesis provides exciting opportunities in the areas of breeding and biotechnology as well as representing a convenient model for studying the process of plant cell proliferation in general and embryogenesis in particular. A cell culture system was devised in which immature barley pollen could be cultured as a monolayer trapped between the bottom glass-cover slip of a live-cell cha...
متن کاملCellular dynamics during early barley pollen embryogenesis revealed by time-lapse imaging
Plants display a remarkable capacity for cellular totipotency. An intriguing and useful example is that immature pollen cultured in vitro can pass through embryogenic development to form haploid or doubled haploid plants. However, a lack of understanding the initial mechanisms of pollen embryogenesis hampers the improvement and more effective and widespread employment of haploid technology in p...
متن کاملPhytotoxicity effects of soil amended residues of wild barley (Hordeum spontaneum Koch) on growth and yield of wheat (Triticum aestivum L.)
Wheat (Triticum aestivum) growth and yield are depressed by physical and chemical interference of weeds. Recently, wild barley (Hordeum spontaneum) population has increased in wheat fields of many provinces of Iran. Since, little is known about the allelopathic effects of wild barley residues in soil, greenhouse studies were conducted to examine the effects of soil amended residues of wild barl...
متن کاملWheat and barley seed system in Syria: How diverse are wheat and barley varieties and landraces from farmer’s fields?
"> The present study described the diversity of wheat and barley varieties andlandraces available in farmer’s fields in Syria using different indicators. Analysisof spatial and temporal diversity and coefficient of parentage along withmeasurements of agronomic and morphological traits were employed to explain thediversity of wheat and barley varieties or landraces grown by farmers in Syria.Farm...
متن کاملSulfinylated azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils.
Polarized cell elongation is triggered by small molecule cues during development of diverse organisms. During plant reproduction, pollen interactions with the stigma result in the polar outgrowth of a pollen tube, which delivers sperm cells to the female gametophyte to effect double fertilization. In many plants, pistils stimulate pollen germination. However, in Arabidopsis, the effect of pisti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015